
  

Context-Free Grammars



  

Recap from Last Time

● If L is a language and S is a distinguishing set for L
that contains infnitely many strings, then L is not
regular

● Distinguishing set: A set of strings, each of which
represent information that requires a distinct state
to represent it

● e.g., “we've seen 2 a's, we've seen 3 a's, ...”

● Infnitely many strings in a distinguishing set
implies there is no fnite number of states that can
represent all the required information.



  

New Stuf



  

A Motivating Question



  

python3
 

>>> 



  

python3
 

>>> (137 + 42) – 2 * 3



  

python3
 

>>> (137 + 42) – 2 * 3
173

>>> 



  

python3
 

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8



  

python3
 

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> 



  

python3
 

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> (200 / 2) + 6 / 2



  

python3
 

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> (200 / 2) + 6 / 2
103.0

>>> 



  

Mad Libs for Arithmetic

Int Op Int Op Int Op Int

Slide credit: Amy Liu
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Mad Libs for Arithmetic

  26  +  42   *  2  +  1
Int Op Int Op Int Op Int

Slide credit: Amy Liu

(          )
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Mad Libs for Arithmetic

   7   *    5    /  5  -  49
Int Op Int Op Int Op Int
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Mad Libs for Arithmetic

Int Op Int Op Int Op Int

Slide credit: Amy Liu

(          )

This only lets us make arithmetic expressions
of the form (Int Op Int) Op Int Op Int.

What about arithmetic expressions that don’t
follow this pattern?

This only lets us make arithmetic expressions
of the form (Int Op Int) Op Int Op Int.

What about arithmetic expressions that don’t
follow this pattern?
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A context-free grammar (or CFG) is a
recursive set of rules that defne a

language.

More on the details of these rules in a bit.

Warning: CFGs are not fnite automata – be prepared
for something complete diferent!



  

Arithmetic Expressions

● Here’s how we might express the
recursive rules from earlier as a CFG.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

This is called a
production rule. It
says “if you see Expr,
you can replace it with

Expr Op Expr.”

This is called a
production rule. It
says “if you see Expr,
you can replace it with

Expr Op Expr.”
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recursive rules from earlier as a CFG.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /
This one says “if you
see Op, you can
replace it with -.”

This one says “if you
see Op, you can
replace it with -.”



  

Arithmetic Expressions

● Here’s how we might express the
recursive rules from earlier as a CFG.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op int
⇒ int Op int
⇒ int / int



  

Arithmetic Expressions

● Here’s how we might express the
recursive rules from earlier as a CFG.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op int
⇒ int Op int
⇒ int / int

These red symbols are
called nonterminals.

They’re placeholders that
get expanded later on.

These red symbols are
called nonterminals.

They’re placeholders that
get expanded later on.



  

Arithmetic Expressions

● Here’s how we might express the
recursive rules from earlier as a CFG.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /
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monospace are terminals.
They’re the final characters

used in the string and
never get replaced.

The symbols in blue
monospace are terminals.
They’re the final characters

used in the string and
never get replaced.



  

Arithmetic Expressions

● Here’s how we might express the
recursive rules from earlier as a CFG.

Expr
⇒ Expr Op Expr
⇒ Expr Op (Expr)
⇒ Expr Op (Expr Op Expr)
⇒ Expr × (Expr Op Expr)
⇒ int × (Expr Op Expr)
⇒ int × (int Op Expr)
⇒ int × (int Op int)
⇒ int × (int + int)

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /



  

Context-Free Grammars

● Formally, a context-free grammar
is a collection of four items:

● a set of nonterminal symbols
(sometimes called variables),

● a set of terminal symbols (the
alphabet of the CFG),

● a set of production rules saying
how each nonterminal can be
replaced by a string of terminals
and nonterminals, and

● a start symbol (which must be a
nonterminal) that begins the
derivation. By convention, the start
symbol is the one on the left-hand
side of the frst production.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /



  

Some CFG Notation

● In today’s slides, capital letters in Bold Red
Uppercase represent nonterminals.

● e.g. A, B, C, D

● Lowercase letters in blue monospace represent
terminals.

● e.g. t, u, v, w

● Lowercase Greek letters in gray italics represent
arbitrary strings of terminals and nonterminals.

● e.g. α, γ, ω

● You don't need to use these conventions on your own;
just make sure whatever you do is readable. �



  

A Notational Shorthand

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /



  

A Notational Shorthand

Expr → int  |  Expr Op Expr  |  (Expr)

Op → +  |  -  |  ×  |  /

Expr → int  |  Expr Op Expr  |  (Expr)

Op → +  |  -  |  ×  |  /



  

Derivations

⇒ Expr

⇒ Expr Op Expr

⇒ Expr Op (Expr)

⇒ Expr Op (Expr Op Expr)

⇒ Expr × (Expr Op Expr)

⇒ int × (Expr Op Expr)

⇒ int × (int Op Expr)

⇒ int × (int Op int)

⇒ int × (int + int)

● A sequence of zero or more
steps where nonterminals are
replaced by the right-hand
side of a production is called
a derivation.

● If string α derives string ω,
we write α ⇒* ω.

● In the example on the left, we
see that

Expr ⇒* int × (int + int).

Expr → int  |  Expr Op Expr  |  (Expr)

Op → +  |  -  |  ×  |  /

Expr → int  |  Expr Op Expr  |  (Expr)

Op → +  |  -  |  ×  |  /



  

The Language of a Grammar

● If G is a CFG with alphabet Σ and start symbol
S, then the language of G is the set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }   

● That is, ℒ(G) is the set of strings of terminals
derivable from the start symbol.



  

Consider the following CFG G over Σ = {a, b, c, d}:
 

Q → Qa | dH
H → bHb | c

 

Which of the following strings are in ℒ(G)?
 

dca
dc
cad
bcb

dHaa

Consider the following CFG G over Σ = {a, b, c, d}:
 

Q → Qa | dH
H → bHb | c

 

Which of the following strings are in ℒ(G)?
 

dca
dc
cad
bcb

dHaa

If G is a CFG with alphabet Σ and start symbol S,
then the language of G is the set

 

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }

If G is a CFG with alphabet Σ and start symbol S,
then the language of G is the set

 

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25



  

Context-Free Languages

● A language L is called a context-free
language (or CFL) if there is a CFG G 
such that L = ℒ(G).

● Questions:
● How are context-free and regular languages

related?
● How do we design context-free grammars for

context-free languages?



  

Context-Free Languages

A language L is called a context-free
language (or CFL) if there is a CFG G 
such that L = ℒ(G).

Questions:
● How are context-free and regular languages

related?

How do we design context-free grammars for
context-free languages?
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CFGs and Regular Expressions

● CFGs consist purely of production rules of the
form A → ω. They do not have the regular
expression operators * or ∪ .

● You can use the symbols * and ∪  if you’d like in
a CFG, but they just stand for themselves.

● Consider this CFG G:

S → a*b

● Here, ℒ(G) = {a*b} and has cardinality one.
That is, ℒ(G) ≠ { anb | n ∈ ℕ }.
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● Theorem: Every regular language is context-free.

● Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

a ( b ∪ ε ) c
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CFGs and Regular Expressions

● Theorem: Every regular language is context-free.

● Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

a ( b ∪ ε ) X → b | ε

 S → aXc

X

c

It’s totally fne for a
production to replace a
nonterminal with the

empty string.

It’s totally fne for a
production to replace a
nonterminal with the

empty string.
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CFGs and Regular Expressions

● Theorem: Every regular language is context-free.

● Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

 X → ZZ

 S → XY

X Y

( a b )∪ c *²

Z



  

CFGs and Regular Expressions

● Theorem: Every regular language is context-free.

● Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

 X → ZZ

 S → XY

X Y

( a b )∪ c *²

Z

 Z → a | b



  

CFGs and Regular Expressions

● Theorem: Every regular language is context-free.

● Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

 X → ZZ

 S → XY

 Y → cY | ε
X Y

( a b )∪ c *²

Z

 Z → a | b
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S → aSb | ε
● What strings can this grammar generate?
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The Language of a Grammar

● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

a ba ba ba b



  

The Language of a Grammar

● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

 ℒ(G) = { anbn | n ∈ ℕ }   

a ba ba ba b



  

Regular
Languages CFLs

All Languages



  

Why the Extra Power?

● Why do CFGs have more power than
regular expressions?

● Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε
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Time-Out for Announcements!



  

Second Midterm Logistics

● Our second midterm exam is Tuesday, May 20th from 6-9
PM. Seating assignments will be posted … soon.

● Topic coverage is primarily lectures 06 – 15 (functions
through DFAs & NFAs) and PS3 – PS6. 

● Because the material is cumulative, topics from PS1 – PS2 and
Lectures 00 – 05 are also fair game.

● The exam is closed-book and closed-computer. You can
bring one double-sided 8.5” × 11” sheet of notes with you.

● Students with OAE accommodations: Exam locations will be
announced … soon. 



  

Our Advice

● Stay fed and rested. 

 Please take care of yourself!

● Read all questions before diving into them. 
You don’t have to go sequentially. Read over each
problem so you know what to expect, then pick
whichever one looks easiest and start there.

● Refect on how far you’ve come. How many of
these questions would you have been able to
understand two months ago? That’s the mark that
you’re learning something!



  

Back to CS103!



  

Designing CFGs

● Like designing DFAs, NFAs, and regular expressions,
designing CFGs is a craft.

● When thinking about CFGs:

● Think recursively: Build up bigger structures from
smaller ones.

● Have a construction plan: Know in what order you will
build up the string.

● Store information in nonterminals: Have each
nonterminal correspond to some useful piece of
information.

● Check our online “Guide to CFGs” for more
information about CFG design.

● We’ll hit the highlights in the rest of this lecture.



  

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w is
a palindrome }

● We can design a CFG for L by thinking
inductively:
● Base case: ε, a, and b are palindromes.
● If ω is a palindrome, then aωa and bωb are

palindromes.
● No other strings are palindromes.

S → ε | a | b | aSa | bSb



  

Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Some sample strings in L:

{{{}}}  

{{}}{}  

{{}{}}{{}{}}  

{{{{{}}}{{}}}}  

ε  

{}{}  
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Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced braces.
● Recursive step: Look at the closing brace that

matches the frst open brace.

{{{ {{ {{ {{ {{} }}} }}} }}}}}
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Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced braces.
● Recursive step: Look at the closing brace that

matches the frst open brace.
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Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced braces.
● Recursive step: Look at the closing brace that

matches the frst open brace. Removing the frst
brace and the matching brace forms two new
strings of balanced braces. 

S → {S}S | ε



  

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w 
has the same number of a's and b's }

Which of these CFGs have language L?Which of these CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25
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Designing CFGs: A Caveat

● When designing a CFG for a language, make sure
that it

● generates all the strings in the language and
● never generates a string outside the language.

● The frst of these can be tricky – make sure to test
your grammars!



  

CFG Caveats II

● Is the following grammar a CFG for the
language { anbn | n ∈ ℕ }?

S → aSb  

● What strings in {a, b}* can you derive?
● Answer: None!

● What is the language of the grammar?
● Answer: Ø

● When designing CFGs, make sure your
recursion actually terminates!



  

Designing CFGs

● When designing CFGs, remember that each
nonterminal can be expanded out
independently of the others.

● Let Σ = {a, ≟} and let L = {an≟ an | n ∈ ℕ }.

● Is the following a CFG for L?

S → X≟X

X → aX | ε

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa≟ aX
⇒ aa≟ a

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa≟ aX
⇒ aa≟ a



  

Finding a Build Order

● Let Σ = {a, ≟} and let L = {an≟ an | n ∈ ℕ }.

● To build a CFG for L, we need to be more
clever with how we construct the string.

● If we build the strings of a's independently of
one another, then we can't enforce that they
have the same length.

● Idea: Build both strings of a's at the same
time.

● Here's one possible grammar based on
that idea:

S → ≟ | aSa  

S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa≟ aaa

S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa≟ aaa



  

Summary of CFG Design Tips

● Look for recursive structures where they exist:
they can help guide you toward a solution.

● Keep the build order in mind – often, you'll build
two totally diferent parts of the string
concurrently.

● Usually, those parts are built in opposite directions:
one's built left-to-right, the other right-to-left.

● Use diferent nonterminals to represent diferent
structures.



  

Applications of Context-Free Grammars



  

CFGs for Programming Languages
BLOCK → STMT

  | { STMTS }

STMTS → ε
 | STMT STMTS

STMT → EXPR;
  | if (EXPR) BLOCK

   | while (EXPR) BLOCK
   | do BLOCK while (EXPR);
   | BLOCK
   | …

EXPR → identifier
  | constant

    | EXPR + EXPR
    | EXPR – EXPR
    | EXPR * EXPR
    | ...



  

Grammars in Compilers

● One of the key steps in a compiler is fguring out
what a program “means.”

● This is usually done by defning a grammar
showing the high-level structure of a programming
language.

● There are certain classes of grammars (LL(1)
grammars, LR(1) grammars, LALR(1) grammars,
etc.) for which it's easy to fgure out how a
particular string was derived.

● Tools like yacc or bison automatically generate
parsers from these grammars.

● Curious to learn more? Take CS143!



  

Natural Language Processing

● By building context-free grammars for actual
languages and applying statistical inference, it's
possible for a computer to recover the likely meaning
of a sentence.

● In fact, CFGs were frst called phrase-structure
grammars and were introduced by Noam Chomsky in
his seminal work Syntactic Structures.

● They were then adapted for use in the context of
programming languages, where they were called
Backus-Naur forms.

● The Stanford Parser project is one place to look for
an example of this.

● Want to learn more? Take CS124 or CS224N!

http://nlp.stanford.edu/software/lex-parser.shtml


  

Next Time

Turing Machines
– What does a computer with unbounded memory

look like?
– How would you program it?
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